Javascript required
Skip to content Skip to sidebar Skip to footer

Find the Ph of a 0.120 M Hf Solution

Titrations

We will look at four types of titrations:

����������� I.A strong acid with a strong base

����������� II.A weak acid with a strong base

����������� III.A strong acid with a weak base

����������� IV.Titration of a polyprotic acid

I.A strong acid titrated with a strong base

We will calculate the pH of 25 mL of 0.1 M HCl titrated with 0.1 M NaOH.At each point in the titration curve, we will need to determine two quantities, the concentration of H+ remaining in the solution, and the volume of the solution.From these, we can calculate the [H+] and, from that, the pH.

1. ������ The initial pH, before the addition of strong base.

����������� In dealing with strong acids and bases, assume that they dissociate completely in water.

����������� [H+] = [HCl]

����������� In this example, we have a 0.1 M solution of HCl, so the [H+] = 0.1 M

����������� - log (0.1) = 1 = pH

2.�������� The pH after addition of 10 mL of base.

����������� We need to determine the moles of H+ remaining and the volume of the solution to calculate [H+].

����������� moles = [concentration] x volume

����������� moles OH- =(0.1 mol/L) x (0.010 L) = 0.0010 mol OH-

����������� starting moles H+ = (0.1 mol/L) x (0.025 L) = 0.0025 mol H+

����������� moles H+ remaining after addition of 10 mL base = 0.0025 � 0.0010 = 0.0015 mol H+

����������� volume after addition of 10.0 mL base = 25.0 mL acid + 10.0 mL base = 35 mL = 0.035 L

����������� [H+] = 0.0015 mol / 0.035 L = 4.28 x 10-2 M H+

����������� pH = -log (4.28 x 10-2) = 1.37

3.�������� The pH after addition of 20 mL of base.

����������

����������� The same steps are followed, as outlined above.

����������� moles OH- = 0.0020

����������� moles H+ remaining = 0.0025 � 0.0020 = 0.0005

����������� volume = 25.0 mL + 20.0 mL = 45.0 mL

����������� [H+] = 0.0005 / 0.045 L = .0111 M

����������� pH = 1.95

4. ������ pH at the equivalence point

����������� moles OH- = 0.025

����������� moles H+ remaining = 0.0025 � 0.0025 = 0

����������� [H+] = [ OH- ]�� pH = 7.00

����������� There is a large change in the pH at the equivalence point.The pH jumps from about 2 to 7.

5.�������� pH after addition of 35.0 mL of base

�����������

����������� After the equivalence point, there will be an excess of base, which will determine the pH.

����������� moles OH- added = 0.0035 moles

����������� moles H+ reacting with OH = 0.0025

����������� moles OH- remaining � 0.0035 � 0.0025 = 0.0010

����������� volume = 25.0 mL + 35.0 mL = 60.0 mL

����������� [ OH- ] = 0.0010 mol / 0.060 L = 0.01667 M

����������� pOH = - log (1.67 x 10-2) = 1.78��������� pH = 12.22

����������� Again, there is a large jump in the pH above the equivalence point (pH = 7.00 to 12.22)

II. ������ A weak acid with a strong base��������

We will calculate the pH of 25 mL of 0.1 M CH3COOHtitrated with 0.1 M NaOH.At each point in the titration curve, we will need to determine two quantities, the concentration of H+ remaining in the solution, and the volume of the solution.From these, we can calculate the [H+] and, from that, the pH. This is a weak acid with a K a = 1.8 x 10-5.

1. ������ The initial pH, before the addition of strong base.

����������� In dealing with weak acids and bases, there will be an incomplete dissociation in water.The degree of dissociation will be determined by K a , the acid dissociation constant in this case.

����������� CH3COOH D CH3COO- + H+

����������� K a = ��� [H+] [CH3COO-]

�������������������� �� ���[CH3COOH]

����������� In this example, we have a 0.1 M solution of CH3COOH, so the [H+] can be calculated using the equilibrium expression:

����������� K a = 1.8 x 10-5 =��� [x] [x] ��, where x is the amount of weak acid that dissociates.

�������������������� �� ���� ������� �������[0.1-x]

����������� x = 1.34 x 10-3 = [H+]������������ pH = 2.87

����������� The pH is higher in this problem than in the strong acid titration because we have partial dissociation of the acid, and

����������� consequently, a lower [H+].

2.�������� The pH after addition of 10 mL of base.

����������� We need to determine the moles of CH3COOH remaining and the volume of the solution to calculate [H+].

����������� moles = [concentration] x volume

����������� moles OH- =(0.1 mol/L) x (0.010 L) = 0.0010 mol OH-

����������� starting moles CH3COOH = (0.1 mol/L) x (0.025 L) = 0.0025 mol CH3COOH

����������� moles CH3COOH remaining after addition of 10 mL base = 0.0025 � 0.0010 = 0.0015 mol CH3COOH

����������� volume after addition of 10.0 mL base = 25.0 mL acid + 10.0 mL base = 35 mL = 0.035 L

����������� Again, we will use the equilibrium expression to calculate the [H+].The added base will neutralize some of the of acid,

����������� and produce the conjugate base, CH3COO- and H2O.At this point in the curve, we have neutralized 0.0010 moles of the acid and produced 0.0010 moles of CH3COO-.These are the new starting concentrations for the equilibrium process.A reaction table ������� (ICE) can be set up to calculate the new equilibrium concentrations.

����������������������������������� [CH3COOH] (M)������� [CH3COO-] (M)��������� [H+] (M)

����������� Initial��������������� 0.0015mol/35 mL�������� 0.0010 mol/35 mL������� 0.0 mol/35 mL

����������� Change������������ � x ���������������������������� +x������������������������������� +x

����������� Equilibrium������ 0.043 � x�������������������� 0.029 + x�������������������� x

����������� K a = 1.8 x 10-5 = (0.029 + x) (x) �������� assume that x is << 0.043 or 0.029������ 1.8 x 10-5 = (0.029)(x) ����������� x = 2.67 x 10-5

����������������������������������� ���� (0.043 � x)������������������������������������������������������������������������������������� ������ (0.043)

�����������������������������������������������

����������� x = [H+] ��������� pH = - log (2.67 x 10-5) = 4.57

�����������

����������� An alternative approach is to realize that these are buffering conditions, with the weak acid, CH3COOH, and its conjugate base, ����������� CH3COO-, both present in the solution.These conditions are appropriate for use of the Henderson-Hasselbalch Equation.

����������� pH = pK a + log( [A-]/[HA])

����������� At this point in the titration, [A-] = 0.029 M and [HA] = 0.043 M.The pK a = - log (1.6 x 10-5) = 4.75.

����������� pH = 4.75 + log (0.029/0.043) = 4.75 -.17 = 4.57

����������� Comparing this to the pH value of the solution of strong acid after addition of 10 mL of strong base (pH = 1.37) illustrates the ��� common ion effect.The presence of one of the products of the dissociation reaction, CH3COO-, lessens the extent of ���� dissociation, and leads to a much higher pH, since fewer H+ ions are formed.

3.�������� The pH after addition of 20 mL of base.

����������

����������� The same steps are followed, as outlined above.

����������� moles OH- = 0.0020 = moles CH3COO-

����������� moles CH3COOH remaining = 0.0025 � 0.0020 = 0.0005

����������� volume = 25.0 mL + 20.0 mL = 45.0 mL

����������� pH = pK a + log ([A-]/[HA])����� pH = 4.75 + log (0.044/0.11) = 5.35

4. ������ pH at the equivalence point

����������� moles OH- = 0.0025 = moles CH3COO-

����������� moles CH3COOH remaining = 0.0025 � 0.0025 = 0

����������� At this point, the only species present is CH3COO-, the conjugate base of a weak acid.It is a hydrolyzing species, which will ������� react with water to make a basic solution.

����������� CH3COO- + H2O D CH3COOH + OH- ��������� K b = K w / K a = 1 x 10-14/ 1.8 x 10-5 = 5.56 x 10-10

����������������������������������� [CH3COO-]���������������� [CH3COOH]�������������� [ OH- ]

����������� Initial��������������� 0.0025 mol/ 50 mL������ 0.0 mol������������ 0.0 mol

����������� Change������������ � x ����������������������������� + x������������������������������ + x

����������� Equilibrium������ 0.05 � x ��������������������� x�������������������������������� x

����������� 5.56 x 10-10 = �����x2 �������� ������������������� x = 5.27 x 10-6 ������������ pOH = 5.28���� pH = 14.00 � 5.28 = 8.72

����������������������������������� (0.05 � x)

����������� At the equivalence point, we will have a basic solution in the titration of a weak acid with a strong base.�� In the strong acid/strong ������� base titration, we had a neutral solution at the equivalence point.

5.�������� pH after addition of 35.0 mL of base

�����������

����������� After the equivalence point, there will be an excess of base, which will determine the pH.

����������� moles OH- added = 0.0035 moles

����������� moles CH3COOH reacting with OH = 0.0025

����������� moles OH- remaining � 0.0035 � 0.0025 = 0.0010

����������� volume = 25.0 mL + 35.0 mL = 60.0 mL

����������� [ OH- ] = 0.0010 mol / 0.060 L = 0.01667 M

����������� There will be an equilibrium between the added OH- and the CH3COO-, but the added base will predominate and will determine

����������� the pH of the solution, as it did in the strong acid/strong base titration.

����������� pOH = - log (1.67 x 10-2) = 1.78��������� pH = 12.22

����������� Shown below is the plot of this titration.At the half-way point, [CH3COOH] = [CH3COO-], the pH = pK a.In this titration the half-����������� way point comes after addition of 12.5 mL of base.The buffering region extends between � 1 pH unit from the pK a.In this case, from pH = 3.75 � 5.75.

II. ������ A weak base with a strong acid��������

We will calculate the pH of 25 mL of 0.1 M NH3 titrated with 0.1 M HCl.At each point in the titration curve, we will need to determine two quantities, the concentration of H+ remaining in the solution, and the volume of the solution.From these, we can calculate the [H+] and, from that, the pH. This is a weak base with a K b = 1.8 x 10-5.

1. ������ The initial pH, before the addition of strong acid.

����������� In dealing with weak acids and bases, there will be an incomplete dissociation in water.The degree of dissociation will be determined by K b , the base dissociation constant in this case.

����������� NH3 + H2O D NH4 + + OH-

����������� K b = ��� [NH4 +] [ OH- ]

�������������������� �� ������[NH3]

����������� In this example, we have a 0.1 M solution of NH3, so the [ OH- ] can be calculated using the equilibrium expression:

����������� K b = 1.8 x 10-5 =��� [x] [x] ��, where x is the amount of weak base that dissociates.

�������������������� �� ���� ������� �������[0.1-x]

����������� x = 1.34 x 10-3 = [ OH- ]����������������������� pOH = 2.87���� pH = 14.00 � 2.87 = 11.13

2.�������� The pH after addition of 10 mL of acid.

����������� We need to determine the moles of NH3 remaining and the volume of the solution to calculate [H+].

����������� moles = [concentration] x volume

����������� moles H+ =(0.1 mol/L) x (0.010 L) = 0.0010 mol H+

����������� starting moles NH3 = (0.1 mol/L) x (0.025 L) = 0.0025 mol NH3

����������� moles NH3 remaining after addition of 10 mL base = 0.0025 � 0.0010 = 0.0015 mol NH3

����������� volume after addition of 10.0 mL acid = 25.0 mL base + 10.0 mL acid = 35 mL = 0.035 L

����������� Again, we will use the equilibrium expression to calculate the [H+].The added acid will neutralize some of the base,

����������� and produce the conjugate acid, NH4 + and OH- .At this point in the curve, we have neutralized 0.0010 moles of the base and ��������� produced 0.0010 moles of NH4 +.These are the new starting concentrations for the equilibrium process.A reaction table ���������� (ICE) can be set up to calculate the new equilibrium concentrations.

����������������������������������� [NH3] (M)������������������� [NH4 +] (M)����������������� [ OH- ] (M)

����������� Initial��������������� 0.0015mol/35 mL�������� 0.0010 mol/35 mL������� 0.0 mol/35 mL

����������� Change������������ � x ���������������������������� +x������������������������������� +x

����������� Equilibrium������ 0.043 � x�������������������� 0.029 + x�������������������� x

����������� K b = 1.8 x 10-5 = (0.029 + x) (x) �������� assume that x is << 0.043 or 0.029������ 1.8 x 10-5 = (0.029)(x) ����������� x = 2.67 x 10-5

����������������������������������� ���� (0.043 � x)������������������������������������������������������������������������������������� ������ (0.043)

�����������������������������������������������

����������� x = [ OH- ] ������� pOH = - log (2.67 x 10-5) = 4.57��������� pH = 14.00 � 4.57 = 9.43

�����������

����������� An alternative approach is to realize that these are buffering conditions, with the weak base, NH3, and its conjugate acid, ����������� NH4 +, both present in the solution.These conditions are appropriate for use of the Henderson-Hasselbalch Equation.

����������� pOH = pK b + log( [BH+]/[B])

����������� At this point in the titration, [BH+] = 0.029 M and [B] = 0.043 M.The pK b = - log (1.6 x 10-5) = 4.75.

����������� pOH = 4.75 + log (0.029/0.043) = 4.75 -.17 = 4.57��� pH = 9.43

3.�������� The pH after addition of 20 mL of base.

����������

����������� The same steps are followed, as outlined above.

����������� moles H+ = 0.0020 = moles NH4 +

����������� moles NH3 remaining = 0.0025 � 0.0020 = 0.0005

����������� volume = 25.0 mL + 20.0 mL = 45.0 mL

����������� pOH = pK b + log ([BH+]/[B])�������������� pOH = 4.75 + log (0.044/0.11) = 5.35 pH = 8.65

4. ������ pH at the equivalence point

����������� moles H+ = 0.0025 = moles NH4 +

����������� moles NH3 remaining = 0.0025 � 0.0025 = 0

����������� At this point, the only species present is NH4 +, the conjugate acid of a weak base.It is a hydrolyzing species, which will ������� react with water to make an acidic solution.

����������� NH4 + + H2O D NH3 + H3O+ �� K a = K w / K b = 1 x 10-14/ 1.8 x 10-5 = 5.56 x 10-10

����������������������������������� [NH4 +]������������������������ [NH3]�������������������������� [H+]

����������� Initial��������������� 0.0025 mol/ 50 mL������ 0.0 mol������������ 0.0 mol

����������� Change������������ � x ����������������������������� + x������������������������������ + x

����������� Equilibrium������ 0.05 � x ��������������������� x�������������������������������� x

����������� 5.56 x 10-10 = �����x2 �������� ������������������� x = 5.27 x 10-6 ������������ pH = 5.28 �������

���������������������������������� (0.05 � x)

����������� At the equivalence point, we will have an acidic solution in the titration of a weak base with a strong acid.��

5.�������� pH after addition of 35.0 mL of base

�����������

����������� After the equivalence point, there will be an excess of acid, which will determine the pH.

����������� moles H+ added = 0.0035 moles

����������� moles NH3 reacting with H+ = 0.0025

����������� moles H+ remaining = 0.0035 � 0.0025 = 0.0010

����������� volume = 25.0 mL + 35.0 mL = 60.0 mL

����������� [H+] = 0.0010 mol / 0.060 L = 0.01667 M

����������� There will be an equilibrium between the added H+ and the NH3, but the added acid will predominate.

����������� pH = - log (1.67 x 10-2) = 1.78

����������� Shown below is the plot of this titration.At the half-way point, [NH3] = [NH4 +], the pH = pK a = 9.25.�� In this titration the half-����������� way point comes after addition of 12.5 mL of acid.

����������� The effective buffering region extends from about pH 8.25 � 10.25.

�����������

IV. Titration of a polyprotic acid

����������� Polyprotic acids contain more than one acidic proton, and more than one pK a.An example is sulfurous acid, H2SO3.

����������� H2SO3 D H+ + HSO3 - ������������� K a1 = 1.4 x 10-2

����������� HSO3 - D H+ + SO3 2- ��������������� K a2 = 6.5 x 10-8

�����������

����������� It will require 2 equivalents of base to neutralize one equivalent of the acid.

����������� We can approximate the titration curve of 40 mL of 0.10 M sulfurous acid with 0.10 M NaOH fairly easily, by making some �� simplifying assumptions.

����������� 1.The pH of the acid in water will be determined solely by the K a1.

�����������

����������� In this example, the initial pH is given by:

����������� 1.4 x 10-2 = [H+] [HSO3 -] =�� ����x2 ���� x = [H+] = 0.031

����������������������������������� [H2SO3]�������� (0.1 � x)

�����������

����������� [Note:In this case the 5% approximation is not good, and you have to solve for x either using the quadratic equation or the method ����������� of successive approximations.]

����������� pH = - log 0.031 = 1.51

����������� 2. The pH at the first half-way point is equal to � logK a1 = 1.85

����������� 3. The pH at the second half-way point is equal to � log K a2 = 7.19

����������� 4. The pH at the equivalence point will be approximately equal to the average of these two pH values, (1.85 + 7.19) � 2 = 4.52.

����������� 5. The pH at the second equivalence point will be determined by the concentration of SO3 2-, the conjugate base of the weak acid, HSO3 -.

����������� The approximate titration curve for 0.1 M sulfurous acid is shown below.Notice the x-axis is expressed as equivalents of base ��� added.We start with (0.1 mol / L x 0.040 L) = 0.004 moles of acid.Each equivalent is 0.004 moles of base, or 40 mL of base. ������� There are buffering regions from pH = 0.85 to pH = 2.85 and from pH = 6.19 to pH = 8.19.

�����������

�����������

Titrations of polyprotic acids are very important in biochemistry, because proteins are comprised of amino acids, chemical species with up to three acidic protons.The charge on the amino acids will change with the ambient pH, and their biological properties are strongly influenced by their charges.

Find the Ph of a 0.120 M Hf Solution

Source: http://butane.chem.uiuc.edu/cyerkes/chem102aefa07/lecture_notes_102/lecture27-102.htm