Find the Ph of a 0.120 M Hf Solution
Titrations
We will look at four types of titrations:
����������� I.� A strong acid with a strong base
����������� II.� A weak acid with a strong base
����������� III.� A strong acid with a weak base
����������� IV.� Titration of a polyprotic acid
I.� A strong acid titrated with a strong base
We will calculate the pH of 25 mL of 0.1 M HCl titrated with 0.1 M NaOH.� At each point in the titration curve, we will need to determine two quantities, the concentration of H+ remaining in the solution, and the volume of the solution.� From these, we can calculate the [H+] and, from that, the pH.�
1.� ������ The initial pH, before the addition of strong base.�
����������� In dealing with strong acids and bases, assume that they dissociate completely in water.
����������� [H+] = [HCl]
����������� In this example, we have a 0.1 M solution of HCl, so the [H+] = 0.1 M
����������� - log (0.1) = 1 = pH
2.�������� The pH after addition of 10 mL of base.
����������� We need to determine the moles of H+ remaining and the volume of the solution to calculate [H+].
����������� moles = [concentration] x volume
����������� moles
����������� starting moles H+ = (0.1 mol/L) x (0.025 L) = 0.0025 mol H+
����������� moles H+ remaining after addition of 10 mL base = 0.0025 � 0.0010 = 0.0015 mol H+
����������� volume after addition of 10.0 mL base = 25.0 mL acid + 10.0 mL base = 35 mL = 0.035 L
����������� [H+] = 0.0015 mol / 0.035 L = 4.28 x 10-2 M H+
����������� pH = -log (4.28 x 10-2) = 1.37
3.�������� The pH after addition of 20 mL of base.
� ����������
����������� The same steps are followed, as outlined above.
����������� moles
����������� moles H+ remaining = 0.0025 � 0.0020 = 0.0005
����������� volume = 25.0 mL + 20.0 mL = 45.0 mL
����������� [H+] = 0.0005 / 0.045 L = .0111 M
����������� pH = 1.95
4.� ������ pH at the equivalence point
����������� moles
����������� moles H+ remaining = 0.0025 � 0.0025 = 0
����������� [H+] = [
����������� There is a large change in the pH at the equivalence point.� The pH jumps from about
5.�������� pH after addition of 35.0 mL of base
�����������
����������� After the equivalence point, there will be an excess of base, which will determine the pH.
����������� moles
����������� moles H+ reacting with OH‑ = 0.0025
����������� moles
����������� volume = 25.0 mL + 35.0 mL = 60.0 mL
����������� [
����������� pOH = - log (1.67 x 10-2) = 1.78��������� pH = 12.22
����������� Again, there is a large jump in the pH above the equivalence point (pH = 7.00 to 12.22)
II. ������ A weak acid with a strong base��������
We will calculate the pH of 25 mL of 0.1 M CH3COOH� titrated with 0.1 M NaOH.� At each point in the titration curve, we will need to determine two quantities, the concentration of H+ remaining in the solution, and the volume of the solution.� From these, we can calculate the [H+] and, from that, the pH.� This is a weak acid with a K a = 1.8 x 10-5.
1.� ������ The initial pH, before the addition of strong base.�
����������� In dealing with weak acids and bases, there will be an incomplete dissociation in water.� The degree of dissociation will be determined by K a , the acid dissociation constant in this case.
����������� CH3COOH D CH3COO- + H+
����������� K a = ��� [H+] [CH3COO-]
�������������������� �� ���[CH3COOH]
����������� In this example, we have a 0.1 M solution of CH3COOH, so the [H+] can be calculated using the equilibrium expression:
����������� K a = 1.8 x 10-5 =��� �[x] [x] ��, where x is the amount of weak acid that dissociates.�
�������������������� �� ���� ������� �������[0.1-x]
����������� x = 1.34 x 10-3 � = [H+]������������ pH = 2.87
����������� The pH is higher in this problem than in the strong acid titration because we have partial dissociation of the acid, and
����������� consequently, a lower [H+].
2.�������� The pH after addition of 10 mL of base.
����������� We need to determine the moles of CH3COOH remaining and the volume of the solution to calculate [H+].
����������� moles = [concentration] x volume
����������� moles
����������� starting moles CH3COOH = (0.1 mol/L) x (0.025 L) = 0.0025 mol CH3COOH
����������� moles CH3COOH remaining after addition of 10 mL base = 0.0025 � 0.0010 = 0.0015 mol CH3COOH
����������� volume after addition of 10.0 mL base = 25.0 mL acid + 10.0 mL base = 35 mL = 0.035 L
����������� Again, we will use the equilibrium expression to calculate the [H+].� The added base will neutralize some of the of acid,
����������� and produce the conjugate base, CH3COO- and H2O.� At this point in the curve, we have neutralized 0.0010 moles of the acid and produced 0.0010 moles of CH3COO-.� These are the new starting concentrations for the equilibrium process.� A reaction table ������� (ICE) can be set up to calculate the new equilibrium concentrations.
����������������������������������� [CH3COOH] (M)������� [CH3COO-] (M)��������� [H+] (M)
����������� Initial��������������� 0.0015mol/35 mL�������� 0.0010 mol/35 mL������� 0.0 mol/35 mL
����������� Change������������ � x� ���������������������������� +x������������������������������� +x
����������� Equilibrium������ 0.043 � x�������������������� 0.029 + x�������������������� x
����������� K a = 1.8 x 10-5 = (0.029 + x) (x) �������� assume that x is << 0.043 or 0.029������ 1.8 x 10-5 = (0.029)(x) ����������� x = 2.67 x 10-5
����������������������������������� ���� (0.043 � x)������������������������������������������������������������������������������������� ������ (0.043)
�����������������������������������������������
����������� x = [H+] ��������� pH = - log (2.67 x 10-5) = 4.57
�����������
����������� An alternative approach is to realize that these are buffering conditions, with the weak acid, CH3COOH, and its conjugate base, ����������� CH3COO-, both present in the solution.� These conditions are appropriate for use of the Henderson-Hasselbalch Equation.
����������� pH = pK a + log( [A-]/[HA])
����������� At this point in the titration, [A-] = 0.029 M and [HA] = 0.043 M.� The pK a = - log (1.6 x 10-5) = 4.75.
����������� pH = 4.75 + log (0.029/0.043) = 4.75 -.17 = 4.57
����������� Comparing this to the pH value of the solution of strong acid after addition of 10 mL of strong base (pH = 1.37) illustrates the ��� common ion effect.� The presence of one of the products of the dissociation reaction, CH3COO-, lessens the extent of ���� dissociation, and leads to a much higher pH, since fewer H+ ions are formed.
3.�������� The pH after addition of 20 mL of base.
� ����������
����������� The same steps are followed, as outlined above.
����������� moles
����������� moles CH3COOH remaining = 0.0025 � 0.0020 = 0.0005
����������� volume = 25.0 mL + 20.0 mL = 45.0 mL
����������� pH = pK a + log ([A-]/[HA])����� pH = 4.75 + log (0.044/0.11) = 5.35
4.� ������ pH at the equivalence point
����������� moles
����������� moles CH3COOH remaining = 0.0025 � 0.0025 = 0
����������� At this point, the only species present is CH3COO-, the conjugate base of a weak acid.� It is a hydrolyzing species, which will ������� react with water to make a basic solution.
����������� CH3COO- + H2O D CH3COOH +
����������������������������������� [CH3COO-]���������������� [CH3COOH]�������������� [
����������� Initial��������������� 0.0025 mol/ 50 mL������ 0.0 mol������������ 0.0 mol
����������� Change������������ � x ����������������������������� + x������������������������������ + x
����������� Equilibrium������ 0.05 � x ��������������������� �x�������������������������������� x
����������� 5.56 x 10-10 = �����x2 �������� � ������������������� x = 5.27 x 10-6 ������������ pOH = 5.28���� pH = 14.00 � 5.28 = 8.72 �
����������������������������������� (0.05 � x)
����������� At the equivalence point, we will have a basic solution in the titration of a weak acid with a strong base.�� In the strong acid/strong ������� base titration, we had a neutral solution at the equivalence point.
5.�������� pH after addition of 35.0 mL of base
�����������
����������� After the equivalence point, there will be an excess of base, which will determine the pH.
����������� moles
����������� moles CH3COOH reacting with OH‑ = 0.0025
����������� moles
����������� volume = 25.0 mL + 35.0 mL = 60.0 mL
����������� [
����������� There will be an equilibrium between the added
����������� the pH of the solution, as it did in the strong acid/strong base titration.
����������� pOH = - log (1.67 x 10-2) = 1.78��������� pH = 12.22
����������� Shown below is the plot of this titration.� At the half-way point, [CH3COOH] = [CH3COO-], the pH = pK a.� In this titration the half-����������� way point comes after addition of 12.5 mL of base.� The buffering region extends between � 1 pH unit from the pK a.� In this case, from pH = 3.75 � 5.75.
II. ������ A weak base with a strong acid��������
We will calculate the pH of 25 mL of 0.1 M NH3 titrated with 0.1 M HCl.� At each point in the titration curve, we will need to determine two quantities, the concentration of H+ remaining in the solution, and the volume of the solution.� From these, we can calculate the [H+] and, from that, the pH.� This is a weak base with a K b = 1.8 x 10-5.
1.� ������ The initial pH, before the addition of strong acid.�
����������� In dealing with weak acids and bases, there will be an incomplete dissociation in water.� The degree of dissociation will be determined by K b , the base dissociation constant in this case.
����������� NH3 + H2O D NH4 + +
����������� K b = ��� [NH4 +] [
�������������������� �� ������[NH3]
����������� In this example, we have a 0.1 M solution of NH3, so the [
����������� K b = 1.8 x 10-5 =��� �[x] [x] ��, where x is the amount of weak base that dissociates.�
�������������������� �� ���� ������� �������[0.1-x]
����������� x = 1.34 x 10-3 = [
2.�������� The pH after addition of 10 mL of acid.
����������� We need to determine the moles of NH3 remaining and the volume of the solution to calculate [H+].
����������� moles = [concentration] x volume
����������� moles H+ =� (0.1 mol/L) x (0.010 L) = 0.0010 mol H+
����������� starting moles NH3 = (0.1 mol/L) x (0.025 L) = 0.0025 mol NH3
����������� moles NH3 remaining after addition of 10 mL base = 0.0025 � 0.0010 = 0.0015 mol NH3
����������� volume after addition of 10.0 mL acid = 25.0 mL base + 10.0 mL acid = 35 mL = 0.035 L
����������� Again, we will use the equilibrium expression to calculate the [H+].� The added acid will neutralize some of the base,
����������� and produce the conjugate acid, NH4 + and
����������������������������������� [NH3] (M)������������������� [NH4 +] (M)����������������� [
����������� Initial��������������� 0.0015mol/35 mL�������� 0.0010 mol/35 mL������� 0.0 mol/35 mL
����������� Change������������ � x� ���������������������������� +x������������������������������� +x
����������� Equilibrium������ 0.043 � x�������������������� 0.029 + x�������������������� x
����������� K b = 1.8 x 10-5 = (0.029 + x) (x) �������� assume that x is << 0.043 or 0.029������ 1.8 x 10-5 = (0.029)(x) ����������� x = 2.67 x 10-5
����������������������������������� ���� (0.043 � x)������������������������������������������������������������������������������������� ������ (0.043)
�����������������������������������������������
����������� x = [
�����������
����������� An alternative approach is to realize that these are buffering conditions, with the weak base, NH3, and its conjugate acid, ����������� NH4 +, both present in the solution.� These conditions are appropriate for use of the Henderson-Hasselbalch Equation.
����������� pOH = pK b + log( [BH+]/[B])
����������� At this point in the titration, [BH+] = 0.029 M and [B] = 0.043 M.� The pK b = - log (1.6 x 10-5) = 4.75.
����������� pOH = 4.75 + log (0.029/0.043) = 4.75 -.17 = 4.57��� pH = 9.43
3.�������� The pH after addition of 20 mL of base.
� ����������
����������� The same steps are followed, as outlined above.
����������� moles H+ = 0.0020 = moles NH4 +
����������� moles NH3 remaining = 0.0025 � 0.0020 = 0.0005
����������� volume = 25.0 mL + 20.0 mL = 45.0 mL
����������� pOH = pK b + log ([BH+]/[B])�������������� pOH = 4.75 + log (0.044/0.11) = 5.35 pH = 8.65
4.� ������ pH at the equivalence point
����������� moles H+ = 0.0025 = moles NH4 +
����������� moles NH3 remaining = 0.0025 � 0.0025 = 0
����������� At this point, the only species present is NH4 +, the conjugate acid of a weak base.� It is a hydrolyzing species, which will ������� react with water to make an acidic solution.
����������� NH4 + + H2O D NH3 + H3O+ �� K a = K w / K b = 1 x 10-14/ 1.8 x 10-5 = 5.56 x 10-10
����������������������������������� [NH4 +]������������������������ [NH3]�������������������������� [H+]
����������� Initial��������������� 0.0025 mol/ 50 mL������ 0.0 mol������������ 0.0 mol
����������� Change������������ � x ����������������������������� + x������������������������������ + x
����������� Equilibrium������ 0.05 � x ��������������������� �x�������������������������������� x
����������� 5.56 x 10-10 = �����x2 �������� � ������������������� x = 5.27 x 10-6 ������������ pH = 5.28 �������
���������������������������������� �(0.05 � x)
����������� At the equivalence point, we will have an acidic solution in the titration of a weak base with a strong acid.��
5.�������� pH after addition of 35.0 mL of base
�����������
����������� After the equivalence point, there will be an excess of acid, which will determine the pH.
����������� moles H+ added = 0.0035 moles
����������� moles NH3 reacting with H+ = 0.0025
����������� moles H+ remaining = 0.0035 � 0.0025 = 0.0010
����������� volume = 25.0 mL + 35.0 mL = 60.0 mL
����������� [H+] = 0.0010 mol / 0.060 L = 0.01667 M
����������� There will be an equilibrium between the added H+ and the NH3, but the added acid will predominate.
����������� pH = - log (1.67 x 10-2) = 1.78
����������� Shown below is the plot of this titration.� At the half-way point, [NH3] = [NH4 +], the pH = pK a = 9.25.�� In this titration the half-����������� way point comes after addition of 12.5 mL of acid.�
����������� The effective buffering region extends from about pH 8.25 � 10.25.�
�����������
IV. Titration of a polyprotic acid
����������� Polyprotic acids contain more than one acidic proton, and more than one pK a.� An example is sulfurous acid, H2SO3.
����������� H2SO3 D H+ + HSO3 - ������������� K a1 = 1.4 x 10-2
����������� HSO3 - D H+ + SO3 2- ��������������� K a2 = 6.5 x 10-8
�����������
����������� It will require 2 equivalents of base to neutralize one equivalent of the acid.�
����������� We can approximate the titration curve of 40 mL of 0.10 M sulfurous acid with 0.10 M NaOH fairly easily, by making some �� simplifying assumptions.
����������� 1.� The pH of the acid in water will be determined solely by the K a1.�
�����������
����������� In this example, the initial pH is given by:
����������� 1.4 x 10-2 = [H+] [HSO3 -] =�� ����x2 ���� � � x = [H+] = 0.031
����������������������������������� [H2SO3]�������� (0.1 � x)
�����������
����������� [Note:� In this case the 5% approximation is not good, and you have to solve for x either using the quadratic equation or the method ����������� of successive approximations.]
����������� pH = - log 0.031 = 1.51
����������� 2.� The pH at the first half-way point is equal to � logK a1 = 1.85
����������� 3.� The pH at the second half-way point is equal to � log K a2 = 7.19
����������� 4. � The pH at the equivalence point will be approximately equal to the average of these two pH values, (1.85 + 7.19) � 2 = 4.52.
����������� 5.� The pH at the second equivalence point will be determined by the concentration of SO3 2-, the conjugate base of the weak acid, HSO3 -.�
����������� The approximate titration curve for 0.1 M sulfurous acid is shown below.� Notice the x-axis is expressed as equivalents of base ��� added.� We start with (0.1 mol / L x 0.040 L) = 0.004 moles of acid.� Each equivalent is 0.004 moles of base, or 40 mL of base.� ������� There are buffering regions from pH = 0.85 to pH = 2.85 and from pH = 6.19 to pH = 8.19.
�����������
�����������
Titrations of polyprotic acids are very important in biochemistry, because proteins are comprised of amino acids, chemical species with up to three acidic protons.� The charge on the amino acids will change with the ambient pH, and their biological properties are strongly influenced by their charges.�
Find the Ph of a 0.120 M Hf Solution
Source: http://butane.chem.uiuc.edu/cyerkes/chem102aefa07/lecture_notes_102/lecture27-102.htm